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Abstract
It is often adequate to model photon migration in human tissue in terms of
isotropic diffusion or random walk models. A nearly universal assumption in
earlier analyses is that anisotropic tissue optical properties are satisfactorily
modelled by using a transport-corrected scattering coefficient which then
allows one to use isotropic diffusion-like models. In the present paper we
introduce a formalism, based on the continuous-time random walk, which
explicitly allows the diffusion coefficients to differ along the three axes. The
corrections necessitated by this form of anisotropy are analysed in the case
of continuous-wave and time-resolved measurements and for both reflectance
and transmission modes. An alternate model can be developed in terms of a
continuous-time random walk in which the times between successive jumps
differ along the three axes, but is not included here.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion-like theories are frequently used to describe photon migration in biological tissues
(Gandjbakhche and Weiss 1995). The terminology ‘diffusion’ will refer to standard diffusion
theory as well as to the discrete analogue of diffusion theory, namely lattice random walk
theory. While such theories cannot be applied to reduce data taken at very short times, there
is a large body of data in which diffusion theory is appropriate and provides a description of
photon migration sufficiently accurate for practical applications. This is true regardless of the
particular variety of the optical measurements, i.e., transmittance, reflectance or tomographic,
and the specific type of measurement, i.e., time-gated, CW, or in the frequency-domain.
Because of the simplicity of diffusion or random walk theory a phenomenological way of
incorporating anisotropic scattering is to correct the intrinsic scattering coefficient µs by using
the modified scattering coefficient µ′

s = µs(1 − 〈cos θ〉) where 〈cos θ〉 is the mean scattering
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angle. The scattering coefficient µ′
s is then used to define the diffusion constant to be used in

an isotropic version of the theory.
While most body tissues can be quite accurately described as having transport-corrected

isotropic optical properties, there are some in which directionality of the constituent fibres
cannot be ignored. Among these are skin (Nickell et al 2000), white matter in brain, collagen
and dentin (Kienle et al 2003). Simon Arridge at University College, London, and his
collaborators at the University of Helsinki were the first research group to address this problem
in some generality and study its implications in the context of diffuse optical tomography
(Heino et al 2002). In their investigation they replace the scalar value of the anisotropy
coefficient by a tensor describing the direction of photon diffusion in the tissue. In the present
paper we develop a simplified lattice random walk model which models directional tissue
properties in terms of differing transition probabilities along the three axes. This is done
to demonstrate how results obtained from the standard isotropic version of the theory are
qualitatively modified by the degree of anisotropy. A theory along the same lines is presently
being developed in which the degree of anisotropy is allowed to be more general than that
considered in the present paper.

To facilitate the analysis we make use of a modification of the continuous-time random
walk (CTRW) (Weiss 1994), as first applied to optical problems in Weiss et al (1998). The
CTRW is a random walk on a simple cubic lattice in which the times between successive
steps are themselves random variables. In the present context the advantage of using the
CTRW is that it avoids certain singularities which arise when the analysis based on a Gaussian
approximation is used. In the investigation by Weiss et al (1998) the lattice was assumed to
have isotropic optical properties. In the present analysis we relax this assumption, allowing
transition probabilities along the different axes to differ. The present model is analysed in
a simplified form in which the axes are restricted to be parallel to those of the laboratory
reference frame.

We point out that, in the framework of the CTRW, there are at least two ways in which
deviations from complete isotropy can be modelled. The first is that the transition probabilities
can be made to depend on the axis direction, and the second is one in which the probability
density for interjump intervals is allowed to differ, depending on the chosen axis along which
the random walker moves. In this paper we study only the effects of the first of these
possibilities. Two geometries will be considered, one in which the tissue is regarded to be
a semi-infinite medium bounded by a planar surface, and the second, in which the tissue is
modelled as a slab bounded by two planar surfaces.

2. Definition of the model

An arbitrary point in the lattice will be denoted by r = (x, y, z) where the components x, y

and z are integers. The variables x and y are unbounded in both the semi-infinite medium and
the slab. In both cases z = 0 is assumed to be an absorbing plane while values with z > 0
represent points interior to the tissue. In the case of a slab, which models the transillumination
measurement, the second absorbing surface is set at z = L. Later, the transformation between
these dimensionless units and physical units will be cited.

The CTRW model is a random walk in which the times between successive steps are
random variables. We deal with the simplest example of a CTRW which has the advantage of
allowing results to be expressed in a closed form. This is defined by the probability density
for the interjump times being

ψ(t) = ke−kt . (2.1)
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The following analysis will be expressed in terms of the dimensionless time τ = kt , which
is equivalent to setting k = 1. We also use the assumption that photons may be absorbed
internally, the absorption following the Beer–Lambert law. The dimensionless absorption
coefficient will be denoted by ν so that the probability that a photon survives for a time τ

without being absorbed is e−ντ . If we further restrict the random walk to make steps to nearest-
neighbouring sites only, then the propagator for an isotropic random walk in free space, i.e.,
the probability that the random walk is at r at time τ , has been shown to be

p(F)(r, τ |r0) = e−(1+ν)τ Ix−x0

(τ

3

)
Iy−y0

(τ

3

)
Iz−z0

(τ

3

)
(2.2)

where r0 = (x0, y0, z0) is the initial position of the random walker and Im(u) is a modified
Bessel function of the first kind (Weiss et al 1998). The propagator in the presence of planar
absorbing boundaries can be found in terms of p(F)(r, τ |r0) by utilizing the method of images
(Riley et al 2002).

To define an analogue to equation (2.2) incorporating directionality we retain the simple
cubic lattice structure of the tissue, but now assume that in a given step the choice of axis along
which it is made is no longer equal to 1/3 as in the case of isotropy. Rather, we will assume
that the x-axis is chosen for a given step, with probability α, the y-axis with probability β and
the z-axis with probability γ . It is further assumed that the random walk along each of the
axes is symmetric. That is to say, the probability of making a step z → z + 1 is equal to that
of making the step z → z − 1, both being equal to γ . With these definitions, the transition
probabilities satisfy the condition

2α + 2β + 2γ = 1. (2.3)

For simplicity we analyse only two special cases: α = β �= γ and β = γ �= α. The first of
these is a case in which there is radial symmetry in any (x, y) plane with a possibly different
transition probability for motion parallel to the z-axis. The second case has the anomalous
axis parallel to either the x- or y-axis.

3. The semi-infinite medium

3.1. Longitudinal directionality

In the most general case the free-space propagator in equation (2.2) is replaced by

p(F)(r, τ |r0) = e−(1+ν)τ Ix−x0(2ατ)Iy−y0 (2βτ)Iz−z0(2γ τ) (3.1)

which is derived exactly as in Weiss et al (1998) and which reduces to the isotropic result
when α = β = γ = 1/6. In all cases the initial position is set at r0 = (0, 0, 1) so that the
propagator for the semi-infinite tissue in the presence of an absorbing plane is found by the
method of images to be

p(r, τ |r0) = e−(1+ν)τ Ix(2ατ)Iy(2βτ)[Iz−1(2γ τ) − Iz+1(2γ τ)]

= ze−(1+ν)τ Ix(2ατ)Iy(2βτ)Iz(2γ τ)/(γ τ) (3.2)

which obviously vanishes at z = 0.
We specialize now to the case α = β so that the transition probability parallel to the z-axis

differs from that in any plane transverse to it. We present results in terms of a bias parameter
B, defined by

B = γ /α (3.3)
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so that in an isotropic system B = 1. Combining the definition of B with equation (2.3) we
find that the transition probabilities can be written entirely in terms of the bias parameter as

α = β = 1

2B + 4
γ = B

2B + 4
. (3.4)

The observable physical quantity in a time-gated measurement is the intensity at
R = (X, Y, 0) at time τ . For a random walk to reach the surface at that location at that
time it must be at (X, Y, 1) at τ and make a step at that time to the boundary with probability
γ . This leads to an expression for the intensity, I (R, τ ), which is

I (R, τ ) = e−(1+ν)τ

τ
IX

( τ

B + 2

)
IY

( τ

B + 2

)
I1

(
Bτ

B + 2

)
. (3.5)

If we regard this as a function of B then it follows from this expression that

lim
B→0

I (R, τ ) = 0 lim
B→∞

I (R,τ ) = 0 (3.6)

where the last limit on the right-hand side is valid except at the origin X = Y = Z = 0.

These results are readily interpreted. The condition B = 0 restricts motion to be parallel to the
absorbing plane so that the random walk can never reach the absorbing plane. When B = ∞
only motion along the z-axis is allowed so that the random walk can only escape at R = 0.
Hence, in this case, the intensity on the surface is zero except at the origin.

To discuss directionality effects we transform an approximation to the propagator so that
the constants can all be written in terms of the bias. At sufficiently long times equation (3.2)
approaches a damped Gaussian, which one finds by making use of the large-ξ approximation

e−ξ Ix(ξ) ≈ 1√
2πξ

exp

(
− x2

2ξ

)
. (3.7)

As a result, the propagator at long times is approximately Gaussian, having the form

p(r, τ |r0) ≈ z

8α(πγ )3/2τ 5/2
exp

{
−γρ2 + αz2

4αγ τ
− ντ

}
(3.8)

where ρ2 = x2 + y2. A transformation using equation (3.4) yields an equivalent formula in
terms of the bias B:

p(r, τ |r0) ≈ (B + 2)3/2z√
8π3Bτ 5

exp

{
−

(
1 +

B

2

) (
ρ2 +

z2

B

)
1

τ
− ντ

}
. (3.9)

With this expression in hand it is possible to find a long-time approximation to the light
intensity at the detection point R in a time-gated measurement. We can appeal to the expression
for the intensity given in equation (3.5) to find the approximation

I (R, τ ) ≈ 1

2π3/2(1 − 2γ )γ 1/2τ 5/2
exp

{
−4γρ2 + 1 − 2γ

4γ (1 − 2γ )τ
− ντ

}

= (B + 2)3/2

(2π)3/2B1/2τ 5/2
exp

[
−

(
B

2
+ 1

)(
ρ2 +

1

B

)
1

τ
− ντ

]
. (3.10)

When B = 1 this expression for I (R, τ ) reproduces an expression for the intensity originally
given in Bonner et al (1987).

Figure 1 shows curves of I (R, τ ) as a function of τ for ρ = 3 and three values of B. The
time at which the peak occurs is seen to increase as B increases in this particular example.
This, however, is not a general result, but depends on the value of ρ. It is easy to evaluate the
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Figure 1. The time-dependent behaviour of the intensity in a time-gated measurement at ρ = 2
plotted as a function of time for different values of the bias parameter B. As the value of B
increases, the maximum value of the intensity is also seen to increase as well as the time at which
the maximum occurs.

Figure 2. Curves of 1000I (3, τ ) plotted as a function of the bias parameter B at three values of
the time. The salient features of the curves are the maximum at small B at the shortest value of the
time. At larger values of the bias, B, the contribution from longer times predominates.

time at which the peak occurs, τmax(B, ρ), from the expression for I (R, τ ) in equation (3.10).
It is

τmax(B, ρ) = 5

2




√
1 +

16ν
(

B
2 + 1

) (
ρ2 + 1

B

)
25

− 1


 . (3.11)

This is a monotonically increasing function of the distance to the target radius, ρ, reflecting
the obvious fact that the photon requires a longer time to arrive at the absorbing plane as
ρ increases. It is also an increasing function of the absorption parameter ν, but not of the
parameter B since τmax(0, ρ) = τmax(∞, ρ) = ∞.

Figure 2 shows three curves of the intensity plotted as 1000I (R, τ ) and calculated from
equation (3.10). The curves, which correspond to ρ = 3, are plotted as a function of the bias
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parameter B for three values of the time, τ . Two qualitative features are evident from the
figure. The first is that at relative small values of B the short term photons predominate in
contributing to the surface intensity, and the second is that at larger values of B the longer time
photons are the major contributors to the surface intensity. A simple physical argument can
be given for these results. When B is relatively small, photons tend to spread out in the plain
z = 1, from which a few will reach the surface at a short distance from the entry point. On the
other hand, as B is increased, the random walkers tend to cluster around x = y = 0 and only a
few photons will reach the surface at ρ = 3, taking a long time to do so. The intensity is also
attenuated at the larger values of B, an effect attributable to the effects of internal absorption.

In the CW experiment the intensity as a function of the parameters is found by integrating
I (R, τ ) over all τ . The result of doing so gives a result that can be written as

I (ρ) =
∫ ∞

0
I (R, τ ) dτ ≈

√
2νB(B + 2)

8πE(ρ)

(
1 +

1√
4νE(ρ)

)
e−√

4νE(ρ) (3.12)

in which

E(ρ) =
(

1 +
B

2

)
(ρ2 + 1). (3.13)

This reduces to the isotropic result when B = 1.

3.2. Directionality parallel to the interface

So far our analysis has described qualitative features of a situation in which measurements are
made along the fibre, while radial symmetry is preserved in any plane perpendicular to that
fibre. We therefore consider a similar analysis when anisotropy is due to tubules parallel to
the face of the tooth and measurements are made perpendicular to that face as in the study by
Kienle et al (2003). This can be defined more precisely by setting α = γ �= β. Since now the
anomalous parameter is β rather than γ we define a new bias parameter as B ′ = β/γ . The
transition probabilities are written in terms of the bias parameter as

α = γ = 1

2B ′ + 4
β = B ′

2B ′ + 4
. (3.14)

Equation (3.2) for the propagator remains valid for this definition of isotropy. In the
Gaussian approximation the analog of equation (3.10), expressed in terms of the anomalous
probability β or B ′, becomes

I (R, τ ) ≈
exp

[
−4β(1 + X2) + (1 − 2β)Y 2

4β(1 − 2β)τ
− ντ

]
2(1 − 2β)β1/2π3/2τ 5/2

= (B ′ + 2)3/2

(2π)3/2(B ′)1/2τ 5/2
exp

[
−

(
1

B ′ +
1

2

)
(B ′(1 + X2) + Y 2)

1

τ
− ντ

]
. (3.15)

The value of I (R, τ ) goes to zero when β reaches its maximum value of 1/2 (i.e., B ′ = ∞)

since the photon, in this case can only move parallel to the interface and therefore can never
reach the surface.

If we examine the expression for I (R, τ ) in equation (3.15) we see that it has a single
peak when regarded as a function of τ . If we set

A(ρ) =
(

1

B ′ +
1

2

)
(B ′(1 + X2) + Y 2)

1

τ
(3.16)

then, provided that ν is small, the approximate peak maximum of τ (X, Y ) occurs at

τmax(X, Y ) ≈ 2A(ρ)/5. (3.17)
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One sees that this simply replaces the factor ρ2 that appears in equation (3.13) by a more general
quadratic form in X and Y which accounts for directionality. The lowest order correction to
equation (3.17) is proportional to ν. At very large values of ν τmax(X, Y ) is approximately
proportional to ν1/2.

It is interesting to consider the behaviour of τmax(X, Y ) as a function of B ′. A glance at
(3.16) indicates that τmax(X, Y ) is infinite when B ′ = 0 because this restricts the motion to
be parallel to the z-axis. Such motion is equivalent to a random walk in one dimension, so
that the time to reach the absorbing plane is infinite (Weiss 1994). Equation (3.15) is valid
for time-gated measurements. The analogous result for CW measurements is found from
equation (3.8) to be

I (ρ) =
∫ ∞

0
I (ρ, τ ) dτ = 1

π

√
ν

2

(
1 +

2

B ′

)3/2 1

A(ρ)

(
1 +

1

2
√

νA(ρ)

)
e−2

√
νA(ρ) (3.18)

which is similar in form to equation (3.12) except for the replacement of the function E(ρ)

by A(ρ). Thus, a measurement of surface intensity as a function of the distance in different
directions can provide a test for deviation from purely isotropic optical properties, since,
when directionality is significant, profiles of the surface intensity will be elliptical rather than
circular.

3.3. Mean transit time

A useful parameter which may be used to characterize the average path length in a time-
resolved measurement is the average time to reach a distance ρ from the injection point. The
mean time to reach ρ = (X, Y ) will be denoted by 〈τ (ρ)〉 and is defined by

〈τ (ρ)〉 =
∫ ∞

0 τI (ρ, τ ) dτ∫ ∞
0 I (ρ, τ ) dτ

. (3.19)

In the following analysis the integrals will be evaluated in terms of the approximate Gaussian
functions in equations (3.10) and (3.15). The parameter 〈τ (ρ)〉 can be regarded as a measure
of the path length of a detected photon provided that the photon is assumed to move at a
constant speed through the tissue.

Consider first the case of directionality perpendicular to the interface, i.e., α = β. An
evaluation of 〈τ (ρ)〉 indicates that it can be expressed in terms of the parameter E(ρ), defined
in equation (3.13), as

〈τ (ρ)〉 ≈ 2E(ρ)

1 + 2
√

νE(ρ)
. (3.20)

When ρ is large this expression approaches proportionality to the first power of the distance,
the specific relation being

〈τ (ρ)〉 ≈ ρ

√
B + 1

2ν
. (3.21)

When properties of the medium are isotropic 〈τ (ρ)〉 was also shown to be proportional to
ρ/

√
ν in Bonner et al (1987). Our present result reduces to that case when B = 1.
When directionality is parallel rather than perpendicular to the interface, the relation

analogous to equation (3.20) replaces the parameter E(ρ), defined in equation (3.13), by
the parameter A(ρ) defined in equation (3.16). The model in this case is no longer radially
symmetric around the z-axis. When A is large the analogue to equation (3.21) is

〈τ (ρ)〉 ≈
√

(B ′ + 2)[B ′(1 + X2) + Y 2]

2B ′ . (3.22)
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Since X and Y have different coefficients in general, this gives the deviation from radial
symmetry provided that B ′ �= 1.

While the formulae mentioned so far have been expressed in terms of dimensionless
coordinates these are readily converted to physical coordinates. The dimensionless coordinate
r is converted to the physical coordinate rp by invoking the relation rp = r

√
2/µ′

s where
µ′

s is the transport-corrected scattering coefficient (Gandjbakhche et al 1992, 1993) while the
dimensionless dissipation parameter can be expressed in terms of the absorption and scattering
coefficients by the relation ν = µa/µ

′
s where µa is the absorption coefficient.

4. Transillumination measurements

To analyse directionality effects that appear in transillumination measurements it is necessary
to have in hand an expression for a propagator in a slab bounded by two parallel absorbing
planes, z = 0 and z = L. This has been calculated for the isotropic case, i.e., when there is
no directionality in Weiss et al (1998). The analysis is again based on the method of images.
A slight modification of that calculation to take into account the slab geometry produces the
result

p(r; τ |r0) = 2

L
e−(1+ν)τ Ix(2ατ)Iy(2βτ)

L−1∑
n=1

e2γ τ cos(nπ/L) sin
(nπ

L

)
sin

(nπz

L

)
(4.1)

when the initial is position r0 = (0, 0, 1). In a transillumination measurement the input and
output points are r0 = (0, 0, 1) and rf = (0, 0, L) respectively. Consequently, the intensity
measured at (0, 0, L) at time τ is

I (rr; τ ) = γp(0, 0, L − 1; τ |r0). (4.2)

When the directionality is longitudinal, so that the transition probabilities are those given
in equation (3.4), I (rr; τ ) is given by

I (rr; τ ) =
BI 2

0

( τ

B + 2

)
L(B + 2)

L−1∑
n=1

(−1)n+1 e−anτ sin2
(πn

L

)
. (4.3)

The parameter an used in the sum is given by

an = 1 + ν − B cos(nπ/L)

B + 2
. (4.4)

The probability density for the time of arrival at rf is given by

f (rf; τ ) = I (rr; τ )∫ ∞
0 I (rr; τ ) dτ

(4.5)

where the denominator, evaluated from equation (4.3), is found to be∫ ∞

0
I (rr; τ ) dτ = 2B

πL(B + 2)

L−1∑
n=1

(−1)n+1 sin2
(πn

L

) 1

an

K

(
2

(B + 2)an

)
(4.6)

in which K(k) is a complete elliptic integral of the first kind (Magnus et al 1966). It is
possible to evaluate 〈τ (ρ)〉 in a closed form for time-gated measurements with off-axis points
rf = (X, Y, 0), provided that the Gaussian approximation in equation (3.7) is valid. The result
is quite complicated, and is therefore omitted from the present exposition.

Typical plots of the function f (rf; τ ) as calculated from equations (4.5) and (4.6) are
shown in figure 3. The curves in this figure indicate that the larger the bias the shorter is the
time for the random walker to be trapped at the point opposite to the input optode. The curves
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Figure 3. Three curves of the function f (rf; τ ) as defined in equation (4.5) as a function of τ and
for three values of transverse bias. The curves were generated for L = 5 and ν = 0.05. Note that
increasing the value of ν is equivalent to increasing the time spent by the photon in moving in the
z-direction, which, in effect, filters out those photons which take longer times to reach the site at
which they are absorbed.

in figure 3 were generated for the value ν = 0.05. When this absorption parameter increases
the time of arrival at the trapping point will decrease, i.e., the curves shown will sharpen up
and the value of rf at which f (rf; τ ) is a maximum will decrease. This occurs because only
those photons that move so as to minimize their time of exposure to absorption will have a
chance to reach the target point.

5. Concluding remarks

Our analysis in this paper is based on a continuous-time lattice random walk on either a
semi-infinite medium bounded by a plane or a slab. The CTRW formalism allows us to derive
at least some results in explicit form in the time domain and can be shown to be equivalent to
the Gaussian approximation at large distances from the input point. We have aimed at deriving
qualitative features of photon migration in media whose optical properties are non-isotropic.
To simplify the analysis we have also restricted it to media in which the directional properties
are parallel to the coordinate axes. A more comprehensive analysis based on an arbitrary
orientation of directional properties with respect to the laboratory coordinate system can be
developed, but is not done here. An experimentally measurable parameter has been suggested
and analysed in the present work, that is, the mean time to reach a given site. Approximations
to this parameter have been given in equation (3.20) for the semi-infinite medium.

Finally, other parameters are available to characterize trajectories in a directional medium,
exemplified by the mean depth reached by a photon, conditional on its reaching the surface, as
discussed in Bonner et al (1987) for the isotropic medium. This parameter would obviously
be sensitive to directional properties.
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Weiss G H, Porrà J M and Masoliver J 1998 The continuous-time random walk description of photon motion in an

isotropic medium Opt. Commun. 146 268–76


